Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
نویسندگان
چکیده
Stochastic differential equations that model an SIS epidemic with multiple pathogen strains are derived from a system of ordinary differential equations. The stochastic model assumes there is demographic variability. The dynamics of the deterministic model are summarized. Then the dynamics of the stochastic model are compared to the deterministic model. In the deterministic model, there can be either disease extinction, competitive exclusion, where only one strain persists, or coexistence, where more than one strain persists. In the stochastic model, all strains are eventually eliminated because the disease-free state is an absorbing state. However, if the population size and the initial number of infected individuals are sufficiently large, it may take a long time until all strains are eliminated. Numerical simulations of the stochastic model show that coexistence cases predicted by the deterministic model are an unlikely occurrence in the stochastic model even for short time periods. In the stochastic model, either disease extinction or competitive exclusion occur. The initial number of infected individuals, the basic reproduction numbers, and other epidemiological parameters are important determinants of the dominant strain in the stochastic epidemic model.
منابع مشابه
Competitive Exclusion in Sis and Sir Epidemic Models with Total Cross Immunity and Density-dependent Host Mortality
We study SIR and SIS epidemic models with multiple pathogen strains. In our models we assume total cross immunity, standard incidence, and density-dependent host mortality. We derive conditions on the models parameters which guarantee competitive exclusion between the n strains. An example is given to show that if these conditions are not satisfied then coexistence between the strains is possib...
متن کاملAsymptotic Dynamics of Deterministic and Stochastic Epidemic Models with Multiple Pathogens
Emerging diseases in animals and plants have led to much research on questions of evolution and persistence of pathogens. In particular, there have been numerous investigations on the evolution of virulence and the dynamics of epidemic models with multiple pathogens. Multiple pathogens are involved in the spread of many human diseases including influenza, HIV-AIDS, malaria, dengue fever, and ha...
متن کاملSubthreshold and superthreshold coexistence of pathogen variants: the impact of host age-structure.
It is well known that in the most general epidemic models with multiple pathogen variants a competitive exclusion principle is valid, such that the variant with the highest reproduction number eliminates the rest. Mechanisms such as super-infection, coinfection, and cross-immunity can lead to pathogen polymorphism where multiple strains coexist. It is also known that variability of infectivity ...
متن کاملIntegrating life history and cross-immunity into the evolutionary dynamics of pathogens.
Models for the diversity and evolution of pathogens have branched into two main directions: the adaptive dynamics of quantitative life-history traits (notably virulence) and the maintenance and invasion of multiple, antigenically diverse strains that interact with the host's immune memory. In a first attempt to reconcile these two approaches, we developed a simple modelling framework where two ...
متن کاملAntigenic distance and cross-immunity, invasibility and coexistence of pathogen strains in an epidemiological model with discrete antigenic space.
In models of pathogen interaction and evolution discrete genotypes in the form of bit strings may be mapped to points in a discrete phenotype space based on similarity in antigenic structure. Cross-immunity between strains, that is the reduction in susceptibility to strain A conferred to a host by infection with strain B, can then be defined for pairs of points in the antigenic space by a speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bulletin of mathematical biology
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2004